Work Package 4: High-Power Technologies for Large

Platforms

ESR4 Synthesis and design of reconfigurable topologies for high-power filters and ESR3 New design techniques for telecommunication payloads of space systems

multiplexers : : suitable for additive manufacturing in the context of large platforms
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* Established the almost linear frequency varaition Smooth profile advantageous to AM
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relationship of resonant frequency
and dielectric tuner depth. Hence,
the prediction of the filter center
frequency is greatly simplified.

* Developed a novel synthesis

technique to design filters for space
application capable of handling high-power.
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 The rectangular waveguide filter so designed
has a smooth profile which is advantageous for
fabricating with Additive Manufacturing (AM).
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A fully reconfigurable filter
prototype has been fabricated
using the CNC milling technique
with 5 micron accuracy.
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* The final prototype was . . " J
fabricated using DMLS — an

4.6: Fab[‘icted Prototype using CNC milling 5, , Deyelopinginew Froquency (GHz)

Simulated and Measurement results
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ESR14 Advanced materials for high power:
Components

r high-power Fabricated prototype using DMLS
waveguide filters and

Ceramic customization means tailoring multiplexers.

the material properties accordingly

with its intended use. The material zing ESR15 Development of topology

properties required for high-power R ce"fi':“;‘ci;;?:;wgf"y optimization tools for RF components
applications are related to both the components.
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manufacturing. Final density does not the thermal conductivity (A) of the Bl conductive UNILIM’s internally

sintered specimens (see below). Glue (epoxy) developed Aluminum Nitride

only depend on the chemistry, Therefore, the optimisation of the
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Simulated temperature profiles at 12.5 GHz with 75°C
ambient temperature and 100 W input power
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/ — A
1650 °C SORCERLZE 112 W/m-°C The temperature gradient within the high-power RF device is minimized for

a better power handling capability. A 5°C decrease in maximum
A= thermal conductivity ~RD = Relative Density temperature is achieved through using UNILIM’s customized AIN.
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